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A remote sensing method utilizing multiband thermal ble to determine in detail these characteristics directly,
they are in turn estimated from land surface classificationsinfrared (8–12 lm) imagery that discriminates between
obtained from a combination of ground observations andsenescent vegetation and bare soil is described. This dis-
remote sensing data.crimination is achieved by computing thermal band emis-

It is difficult, however, to create and maintain accuratesivities from a temperature-emissivity separation algo-
land surface classification data sets, particularly over ag-rithm, and then classifying surface features based on
ricultural regions. While it may take weeks to develop andspectral emissivity contrast. In a study of rangelands and
verify land use maps based on both ground observationswinter wheat fields in central Oklahoma, the contrast, or
and remote sensing data, the actual land use patterns andrange, of these spectral emissivities is diagnostic of the
crop conditions will potentially change, perhaps severalpresence or absence of surface vegetative cover. A large
times, over a period of a few days. For example, a wheatrange of emissivities, approximately greater than 0.03, is
crop could mature, be harvested, and the field plowed allindicative of bare soil, while a low range, less than 0.02,
after the time of classification.is indicative of vegetative cover. When knowledge of the

One way to improve surface classification is to re-emissivity range is combined with a vegetation index, such
motely collect diagnostic bands from the visible and near-as NDVI, the surface may be classified by a ternary system:
infrared (VIS/NIR) bands simultaneously with brightnessbare soil, green vegetation, and senescent vegetation. Dis-
temperature data from thermal infrared bands. This willcrimination between bare soil and soil covered with senes-
soon be feasible with a new sensor—ASTER (Advancedcent vegetation using emissivity contrast should be feasible
Spaceborne Thermal Emission and Reflection Radiometer;in other settings. The benefit of this technique is that heat
see http://asterweb.jpl.nasa.gov)—recently launched onflux predictions can be based on a more accurate surface
the EOS-Terra satellite (Yamaguchi et al., 1998). ASTERrepresentation than otherwise provided by visible and
simultaneously collects visible, near-infrared, and thermal-near-infrared land classification schemes. Published by
infrared data at spectral and spatial resolutions pre-Elsevier Science Inc.
viously unavailable.

In our preparation for ASTER, we have been investi-
gating the performance of heat flux models by combiningINTRODUCTION
remotely sensed Thermal Infrared Multispectral Scanner

The accurate parameterization of land surface characteris- (TIMS; Palluconi and Meeks, 1985) data from aircraft and
tics is critical to reliably estimate surface heat fluxes from LANDSAT TM with ground observations. We have noticed
remote sensing platforms. In typical flux modeling that the land use images we develop using conventional
schemes, characteristics such as vegetation canopy height, VIS/NIR classification schemes fail to distinguish between
density, and albedo are related to surface roughness, frac- senescent, or harvested vegetation, and bare plowed soil.
tional cover, and intercepted radiation. Since it is not feasi- This inability has been noted elsewhere. Daughtry et

al. (1995), for example, report that plant litter in general
cannot be discriminated from bare soil based on any one

* USDA/ARS Hydrology Laboratory particular visible or near-infrared reflectance. Under some
Address correspondence to A. N. French, Hydrology Lab, Building circumstances litter can be discriminated by using three

007, BARC-WEST, USDA/ARS, Beltsville, MD 20705, USA. E-mail: 50-nm bands over 2.0 to 2.2 microns (Nagler et al., 2000),anfrench@hydrolab.arsusda.gov
Received 15 November 1999; revised 10 March 2000. but the technique is somewhat sensitive to moisture con-

REMOTE SENS. ENVIRON. 74:249–254 (2000)
Published by Elsevier Science Inc. 0034-4257/00/$–see front matter
655 Avenue of the Americas, New York, NY 10010 PII S0034-4257(00)00115-2



250 A. N. French et al.

Figure 1. Emissivity response spectra for a
quartz-bearing soil from field ER13, green
grass sod, and dry grass sod (the last two from
the ASTER spectral library). When remotely
viewed, both green and dry grass are expected
to have similar and nearly uniformly high
emissivities (ε<0.98). Dashed lines delineate
TIMS bands.

tent and requires sensor bands unavailable on remote sens- Fig. 1 is also abrupt when TIMS bands 3 and 4 are compared
(Table 1).ing platforms like ASTER.

Emissivity spectra are distinctive for many common soilsSince the sensible and latent flux contributions from
because they usually contain two quartz restrahlen bandssenesced vegetation and from bare soil are likely to be
between 8 and 9 lm. Since most soils contain quartz miner-different, it is important to recognize the instances where
als, the emissivity profile may have a wide range, or con-there is ambiguity. But rather than just account for the
trast, from about e50.80 at 9 lm up to e50.98 at 12 lmambiguity, we have found that the ambiguity can be re-
(Salisbury and D’Aria, 1992a). Emissivity spectra may notmoved if thermal-infrared data is included in the land
be diagnostic, however, if the soil texture is very fine or ifsurface discrimination scheme.
the surface moisture content is significant (Salisbury and
D’Aria, 1992b).

THE THERMAL EMISSIVITY Plant matter spectra (Elvidge, 1988), on the other hand,
CONTRAST METHOD are distinct from soil spectra. Both green and senescent

vegetation have high emissivities with a small range whenThe scheme proposed here is to combine the well-known
viewed as a plant canopy (Palluconi et al., 1990). Alterna-VIS/NIR vegetation index, NDVI, with a thermal-band
tively, vegetation may have high emissivities in the 8-lmemissivity contrast image. Thermal emissivity contrast is
to 9-lm wavelengths and low emissivities in the 9.5-lm tosimply the range of observed emissivities for a given image
12-lm wavelengths (Table 1) when viewed as individualpixel. It is mainly a function of material properties, such
leaves. In remote sensing applications, this drop in emissiv-as vegetative cover and soil mineralogy, and is insensitive
ity with increasing wavelengths probably would not beto surface temperature variations.
observable because vegetation is usually resolved as a can-Emissivity, a dimensionless quantity ε, represents the
opy. Despite this potential ambiguity, plants can be distin-ratio of a material’s spectral radiance, L, to a perfect black-
guished from bare soils because their emissivity spectrabody spectral radiance, LBB, at a given temperature [see can differ by De>0.06. When plant emissivities are com-

Eq. (1)]: bined with NDVI measurements that identify green vege-
tation, the land surface may be remotely identified as bare

e 5
L

LBB

(1) soil, green vegetation, or senescent vegetation.
The best way to obtain thermal band emissivities is a

Emissivities of surface materials vary with wavelength. The subject of current research, and a range of approaches are
variation may be strong, as for bare soil, or weak, as for used. Reviews of many of them may be found in Li et al.
green grass (Fig. 1). If emissivity of a material is sampled (1999), as well as in Hook et al. (1992). The particular
in the same manner as for VIS/NIR sensors by using several technique used for this study is based on the temperature-
bands, its approximate emissivity signature can be deter- emissivity separation (TES) algorithm, which may resolve
mined. For example, note that the abrupt jump in emissiv- surface temperatures within 1.5 K and De<0.015 (Gillespie

et al., 1998; Schmugge et al., 1998). In brief, the TESity for bare soil from El Reno field ER13 at ≈9.5 lm in
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Table 1. TIMS Band-Averaged Emissivities

TIMS Bands

Material 1 2 3 4 5 6

ER13 soil 0.908 0.912 0.910 0.953 0.967 0.967
Green grass 0.987 0.973 0.970 0.979 0.982 0.988
Dry grass 0.969 0.971 0.962 0.939 0.910 0.908

Field ER13 emissivities are from soil measurements by Cindy Grove. The green grass and
the dry grass measurements are from “large piece[s] of sod,” as described in the ASTER spectral
library (Salisbury and D’Aria, 1992a). At this scale, green grass is spectrally distinct from dry
grass, but would not be when viewed remotely. Comparably detailed spectra of vegetation
canopies are, to our knowledge, unavailable.

method makes use of an empirical relation between the the 12-band TMS (Thematic Mapper Simulator) Daedalus
range of emissivities and the minimum emissivity. TES is 1268 scanner. Nearby balloon sondes were used to deter-
sensitive to uncertainties in atmospheric water vapor (Coll mine an atmospheric profile, and the MODTRAN program
et al., 1998), as well as to instrument calibration. Conse- (Berk et al., 1998) was used to generate average atmo-
quently, these effects need to be removed if reliable surface spheric transmissivity and radiance for each of the thermal
temperatures and emissivities are to be obtained. Provided bands. When the TES algorithm was applied, a histogram
these adjustments are made, observed brightness tempera- of the resulting emissivity contrast image revealed a bi-
tures from the different thermal bands will be nearly equal modal distribution (Fig. 2) and was representative of the
when observing a surface with no emissivity contrast; in relative abundance of vegetated and bare surfaces. Most
other words, when the surface is a blackbody or a graybody. of the scene had low emissivity contrast, De<0.036, except
When the brightness temperatures from the thermal bands for the bare soils, which had contrasts of 0.04<De<0.07.
differ greatly, as in the ER13 soil sample mentioned earlier, An image of the emissivity contrast is shown in Fig. 3A,
the surface is not a blackbody or graybody because its where dark tones indicate low contrast and light tones
emissivity is wavelength dependent. indicate contrast of 0.03 or greater. The computed NDVI

In TES, relative emissivities, bi, are derived for each for the same area (Fig. 3B) indicates low abundance of
band, where ei represents band emissivities using Eq. (1) green vegetation by dark tones and abundant green vegeta-
and represents the average emissivity over all bands [see tion, with Leaf Area Indices (LAI) greater than 2 indicated
Eq. (2)]: by light tones.

When emissivity contrast data is jointly plotted with
bi;

ei

e
(2) NDVI data, three landscape types can be classified as fol-

lows (Fig. 4):
The maximum range of values, denoted as MMD (Maxi-

1. Green vegetation, as in field ER09, had relativelymum-Minimum apparent emissivity Difference), is then
high NDVI (<0.37) and low emissivity contrastused to compute the minimum emissivity, εmin [see Eq. (3)]:
(De<0.016).

emin5a2b*MMDc (3) 2. Bare soil, as in field ER13, had low NDVI
(<20.1) and high emissivity contrast (De<0.055).where a, b, and c are constants determined from experi-

3. Senescent vegetation, as in the harvested (but un-mental data. The remaining band emissivities can then be
tilled) winter wheat field ER10, had low NDVIsolved with Eq. (4):
(<20.1) and low emissivity contrast (De<0.015).

ei5emin*3 bi

min (bi)
4. (4) Ground observations of the El Reno fields confirm

these relationships and are listed in Table 2. Field ER09
had a high average LAI of 2.7, 78% of which was green
vegetation (green LAI of 2.14). Field ER10 had a low LAI

RESULTS of 0.65, none of which was green. Wet biomass of ER10,
consisting of harvested wheat stubble and residue, is closeLand classification using thermal emissivity contrast can
to double that of ER09. Field ER13, because it had beenbe demonstrated using remotely sensed data collected on
recently plowed, had no significant vegetation.2 July 1997 during the Southern Great Plains 1997 experi-

ment (SGP97) in Oklahoma, USA (see http://hydrolab.ar-
susda.gov/sgp97/ for details). Thermal infrared data col- DISCUSSION
lected over the study site at El Reno were combined with

The emissivity contrast image over El Reno fields showsvisible near-infrared data to perform the analysis. The ther-
mal infrared data were collected from an aircraft using that bare soils had a relatively high thermal emissivity range
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Figure 2. Histogram of subset of El Reno flight line
1, run 3, on 2 July 1997 (image shown in Fig 3A).
Most of the scene had emissivity variations less than
<0.36, corresponding to vegetated or residue-covered
surfaces. Bare soil surfaces, to the right of the dashed
line, had emissivity variations of 0.04 to over 0.07.
The discrete nature of the El Reno fields causes the
bimodal distribution of emissivity contrast and simpli-
fies categorization of vegetative cover vs. bare soil.
Other sites with a more uniform distribution of frac-
tional vegetative cover would require ground observa-
tions to determine the minimum emissivity contrast
that best represents bare soil.

(De<0.05), but that covered soils had a low range contrast and low NDVI. Soils covered by green vegetation
have low emissivity contrast and high NDVI. Soils covered(Dε,0.02). This distinction is supported by uncertainty

estimates. Based on spatial variations within fields ER10 by nongreen, or senescent, vegetation have low emissivity
contrast and low NDVI.and ER13, emissivity contrast uncertainty was De<60.01,

significantly less than the mean emissivity separation of Because the land surfaces at El Reno consisted of
nearly homogeneous and discrete grasslands, wheat fields,De<0.04. The ability to discriminate bare soils from cov-

ered soils can be combined with NDVI’s ability to discrimi- and bare soil fields, the relationship between emissivity
contrast and vegetated cover were easily observed. Thenate green vegetation from the absence of green vegetation

to yield three land classifications: bare soil, soil covered histogram of emissivity contrast for the El Reno area (Fig.
2) naturally separated bare soil surfaces from surfaces cov-with green vegetation, and soil covered with nongreen

vegetation. Bare soils are distinguished by high emissivity ered by green and senescent vegetation at De<0.036. But

Figure 3. Images of El Reno fields, 2 July
1997 (aircraft altitude 5 km above ground
level, pixel size 12 m). Three different land
surfaces in the El Reno study area are out-
lined: a pasture (ER09), a harvested winter
wheat field (ER10), and a plowed winter
wheat field (ER13). Each image covers ap-
proximately 5 km north to south (north is
toward the top) and 2 km east to west. Maxi-
mum range emissivity, shown at the left (A),
is scaled for contrasts between 0.00 to 0.06.
NDVI, shown at the right (B), ranges from
20.1 to 10.7. Fields ER10 and ER13 are
indistinguishable in the NDVI scene, but are
easily distinguished in the emissivity scene.
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Figure 4. Cross-plot of mean NDVI vs.
mean maximum range of emissivity, based
on the scene shown in Fig. 3. Asterisks
indicated mean NDVI and mean maxi-
mum emissivities for each field. Standard
deviations, indicated by dashed lines,
show that there is greater variability in
emissivity contrast than in NDVI, but that
the plowed field (ER13) is nevertheless
distinct from the harvested winter wheat
field (ER10). Nearly identical results
were obtained from a 1.5-km altitude
flight on the same day and similar time.

this separation cannot be expected to be distinctive in French et al. (2000), heat fluxes were predicted in two
ways: first by modeling field ER10 as a bare soil surface,general, particularly where the landscape consists of a more

uniformly distributed range of vegetative cover. In these and second by modeling the field as a canopy of senescent
vegetation. As shown in Table 3, the inclusion of deadcases, local observations of surface conditions would be

required to help determine the relationship between vege- vegetation canopy potentially can reduce the soil sensible
heat flux (H from soil) and ground heat flux (G). G is lowertated cover and emissivity contrast. With such observations

it might be possible to not only categorize the surface as because less radiation reaches the soil surface (Kustas and
Norman, 1999). H from soil is lower with a canopy layercovered or bare, but also to infer fractional vegetation

cover from emissivity contrast. Current results at El Reno, because resistance to heat transport is larger. The total
predicted H for either surface condition, however, remainshowever, are insufficient to support this additional capa-

bility. essentially the same. Soil latent heat flux (LE from soil) is
higher for the wheat stubble surface, possibly because theDistinguishing between the three cover conditions

(green vegetation, senescent vegetation, and bare soil) is soil remained relatively wetter when shielded by vege-
tation.important because the cover strongly influences the surface

thermal gradient, surface roughness, and the consequent
surface heat flux. For example, sensible heat flux (H) from

CONCLUSIONSa bare soil surface may be parameterized as a single source,
but if the surface is covered, there are two sources of heat Remote sensing data from the SGP97 El Reno study show
flux: vegetation and soil. Dead vegetation increases surface that senescent vegetation can be distinguished from bare
roughness, acting as a canopy with no latent heat flux soil surfaces using thermal infrared emissivity differences.
(LE). It also reduces the amount of radiant energy at the When combined with VNIR, the thermal emissivity con-
soil surface. trast technique can improve results from heat flux models

These effects can be demonstrated over wheat stubble through better land surface classification. Thermal emissiv-
ity contrast may be especially useful for energy balancein field ER10. Using TES-computed temperatures along

with a parallel two-source model described and tested in modeling in agricultural areas where distinguishing be-

Table 2. El Reno Fields: Ground Observations

Field Land Use Total LAI Green LAI Wet Biomass (g m22)

ER09 Pasture 2.73 2.14 368.7 (23.7)
ER10 Wheat (harvested) 0.65 0.00 675.3 (36.1)
ER13 Bare soil 0.00 0.00 0.00

The leaf area indices and wet biomass entries are averages of three samples within a field.
Standard deviations for wet biomass are indicated in parentheses.
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Table 3. El Reno Field ER10, Modeled as Bare Soil and as Wheat Stubble

Surface H from Soil H from Canopy LE from Soil LE from Canopy G Rn

Bare soil 254 (90) 0 (0) 103 (91) 0 (0) 153 (2) 510 (7)
Wheat stubble 115 (9) 127 (3) 157 (18) 0 (0) 116 (3) 515 (6)

Listed are model-predicted sensible heat fluxes (H), latent heat fluxes (LE), ground heat fluxes (G), and net radiation (Rn) values, all in Wm22.
Mean surface temperature was 458C and mean NDVI was 20.08. Standard deviation of fluxes within the field are indicated in parentheses.

and Kahle, A. (1998), A temperature and emissivity separationtween bare soils and harvested fields can lead to significant
algorithm for Advanced Spaceborne Thermal Emission andchanges in energy partitioning.
Reflection Radiometer (ASTER) images. IEEE Trans. on Geo.Extension of the method to other areas will require
Remote Sens. 36:1113–1126.an approach similar to the one used at El Reno. Multiband

Hook, S. J., Gabell, A., Green, A., and Kealy, P. (1992), A compari-thermal infrared data, good estimates of atmospheric water
son of techniques for extracting emissivity information fromvapor, a few confirmatory ground observations of field thermal infrared data for geological studies. Remote Sens.

conditions, and emissivity spectra of typical soils would all Environ. 42:123–135.
be required. Future research may show that it is feasible Kustas, W., and Norman, J. (1999), Evaluation of soil and vegeta-
to estimate degree of fractional vegetative cover from emis- tion heat flux predictions using a simple two-source model
sivity contrast. with radiometric temperatures for partial canopy cover. Agric.

For. Meteorol. 94:13–29.
Li, Z.-L., Becker, F., Stoll, M. P., Wan, Z. (1999), Evaluation ofThe ASTER project provided support for the aircraft flights and

six methods for extracting relative emissivity spectra fromresources for the data analysis. Cindy Grove, Jet Propulsion Labo-
thermal infrared images. Remote Sens. Environ. 69:197–214.ratory, Pasadena, California made the soil emissivity measure-
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